Referências Bibliográficas

[1]

Brasil. Plano safra 2023/2024. Julho 2024. Online; acessado 14 de Julho de 2024. URL: https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/plano-safra/2023-2024.

[2]

Banco Central do Brasil. Resolução bcb n° 140 de 15 de setembro de 2021. Technical Report 140, Banco Central do Brasil, Setembro 2021. URL: https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%A3o%20BCB&numero=140.

[3]

Banco Central do Brasil. Resolução cmn n° 5.081 de 29 de junho de 2023. Technical Report 5.081, Banco Central do Brasil, Junho 2023. URL: https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%A3o%20CMN&numero=5081.

[4]

Michael Stonebraker and Lawrence A. Rowe. The design of postgres. In Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data, SIGMOD '86, 340–355. New York, NY, USA, 1986. Association for Computing Machinery. doi:10.1145/16894.16888.

[5]

Michael Stonebraker and Lawrence A. Rowe. The postgres papers. Technical Report, University of California at Berkeley, USA, 1987.

[6]

Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD '84, 47–57. New York, NY, USA, 1984. Association for Computing Machinery. doi:10.1145/602259.602266.

[7]

John R. Herring. Opengis implementation standard for geographic information - simple feature access - part 1: common architecture. Technical Report 06-103r4, Open Geospatial Consortium Inc., May 2011. URL: http://www.opengeospatial.org/standards/sfa.

[8]

John R. Herring. Opengis implementation standard for geographic information - simple feature access - part 2: sql option. Technical Report 06-104r4, Open Geospatial Consortium Inc., August 2010. URL: http://www.opengeospatial.org/standards/sfs.

[9]

ISO/IEC. Iso/iec 13249-3:2016 information technology - database languages - sql multimedia and application packages - part 3: spatial. Technical Report 5th edition, ISO/IEC, May 2016. URL: https://www.iso.org/standard/60343.html.

[10]

Sandro Santilli, Paul Ramsey, Daniel Baston, Mateusz Łoskot, Martin Davis, Regina Obe, Charlie Savage, Yury Bychkov, Even Rouault, and Michael Toews. GEOS computational geometry library. Technical Report, OSGEO, 2021. URL: https://libgeos.org/, doi:https://doi.org/10.5281/zenodo.11396894.

[11]

Gilberto Ribeiro de Queiroz. Bancos de dados geográficos. 2024. URL: https://gqueiroz.github.io/bdg/index.html.

[12]

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387, jun 1970. doi:10.1145/362384.362685.

[13]

Donald D. Chamberlin. Early history of sql. IEEE Annals of the History of Computing, 34(4):78–82, 2012. doi:10.1109/MAHC.2012.61.

[14]

Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A small set of formal topological relationships suitable for end-user interaction. In David Abel and Beng Chin Ooi, editors, Advances in Spatial Databases, 277–295. Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. doi:10.1007/3-540-56869-7_16.

[15]

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and Jupyter development team. Jupyter notebooks - a publishing format for reproducible computational workflows. In Fernando Loizides and Birgit Scmidt, editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas, 87–90. IOS Press, 2016. URL: https://eprints.soton.ac.uk/403913/.

[16]

The IPython Development Team. Ipython documentation. 2021. Online; acessado 24 de Abril de 2021. URL: https://ipython.readthedocs.io/en/stable/.

[17]

Jupyter Team. The jupyter notebook. 2021. Online; acessado 24 de Abril de 2021. URL: https://jupyter-notebook.readthedocs.io/en/latest/.

[18]

Project Jupyter. Jupyterlab documentation. 2021. Online; acessado 24 de Abril de 2021. URL: https://jupyterlab.readthedocs.io/en/latest/.

[19]

Jupyter Team. The jupyter notebook format. 2021. Online; acessado 24 de Abril de 2021. URL: https://nbformat.readthedocs.io/en/latest/.

[20]

Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific computing. Computing in Science and Engineering, 9(3):21–29, May 2007. doi:10.1109/MCSE.2007.53.

[21]

G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, May 1995. URL: https://ir.cwi.nl/pub/5007/05007D.pdf.

[22]

Python Software Foundation. The python language reference. 2021. Online; acessado 07 de Março de 2021. URL: https://docs.python.org/3/reference/index.html.

[23]

Python Software Foundation. The python standard library. 2021. Online; acessado 07 de Março de 2021. URL: https://docs.python.org/3/library/index.html.

[24]

John R. Jensen. Sensoriamento remoto da vegetação. In Keith C. Clarke, editor, Sensoriamento Remoto do Ambiente, chapter 11, pages 357–410. Parêntese Editora, São José dos Campos, São Paulo, Brasil, 2009.

[25]

Banco Central do Brasil. Sicor - microdados do crédito rural e do proagro - modelo e dicionário de dados. Julho 2024. Online; acessado 07 de Julho de 2024. URL: https://www.bcb.gov.br/htms/sicor/manualDadosSicor_V6.pdf.

[26]

Banco Central do Brasil. Sicor - microdados do crédito rural e do proagro - modelo e dicionário dos dados complementares. Julho 2024. Online; acessado 07 de Julho de 2024. URL: https://www.bcb.gov.br/htms/sicor/manualDadosComplementaresSicor_V9.pdf.

[27]

Banco Central do Brasil. Proagro – programa de garantia da atividade agropecuária. Technical Report 8, Banco Central do Brasil, Outubro 2023. URL: https://www.bcb.gov.br/content/estabilidadefinanceira/proagro_docs/resumo_instrucoes_Proagro.pdf.

[28]

Banco Central do Brasil. Manual de crédito rural (mcr). Technical Report 694, Banco Central do Brasil, Maio 2021. URL: https://www3.bcb.gov.br/mcr.

[29]

Wenceslau Geraldes Teixeira, Daniel de Castro Victoria, Alexandre Hugo Cezar Barros, José Francisco Lumbreras, José Coelho de Araújo Filho, Fernando Antônio Macena da Silva, Evaldo de Paiva Lima, Júlio Sílvio de Sousa Bueno Filho, and José Eduardo Boffino de Almeida Monteiro. Predição da água disponível no solo em função da granulometria para uso nas análises de risco no zoneamento agrícola de risco climático. Technical Report, Embrapa Solos, Brasil, 2021.

[30]

José Eduardo Boffino de Almeida Monteiro, Daniel de Castro Victoria, José Renato Bouças Farias, Alexandre Hugo Cezar Barros, Evaldo de Paiva Lima, José Coelho de Araújo Filho, Fernando Antônio Macena da Silva, Balbino Antonio Evangelista, and Wenceslau Geraldes Teixeira. Classes de água disponível do solo para uso no zoneamento agrícola de risco climático. Technical Report, Embrapa, Brasil, 2022.

[31]

MAPA. Tábua de risco- zoneamento agrícola de risco climático. 2024. Online; acessado 02 de Agosto de 2024. URL: https://dados.agricultura.gov.br/dataset/6d3d141c-885e-41a4-ab7f-dc8ff323b96f/resource/bebb0ebb-bc75-460c-b900-a7a1ebd87bee/download/dicionario-de-dados-tabua-de-risco-04_24.pdf.

[32]

Rodrigo Medeiros. Evolução das tipologias e categorias de áreas protegidas no brasil. Ambiente & Sociedade, 9(1):41–64, Janeiro 2006. URL: https://doi.org/10.1590/S1414-753X2006000100003, doi:10.1590/S1414-753X2006000100003.

[33]

Brasil. Lei federal nº 9.985 de 18 de julho de 2000. Julho 2024. Online; acessado 07 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/leis/l9985.htm.

[34]

Wikipedia. Sistema nacional de unidades de conservação da natureza. Julho 2024. Online; acessado 07 de Julho de 2024. URL: https://pt.wikipedia.org/wiki/Sistema_Nacional_de_Unidades_de_Conserva%C3%A7%C3%A3o_da_Natureza.

[35]

Ilka Boaventura Leite. Os quilombos no brasil: questões conceituais e normativas. Etnográfica, Iv(2):333–354, 2000. URL: http://ceas.iscte.pt/etnografica/docs/vol_04/N2/Vol_iv_N2_333-354.pdf, doi:https://doi.org/10.4000/etnografica.2769.

[36]

Brasil. Decreto nº 4.887, de 20 de novembro de 2003. Agosto 2024. Online; acessado 04 de Agosto de 2024. URL: https://www.planalto.gov.br/ccivil_03/decreto/2003/d4887.htm.

[37]

Brasil. Decreto nº 6.514, de 22 de julho de 2008. Julho 2024. Online; acessado 09 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/decreto/d6514.htm.

[38]

J. Schmitt. Crime sem castigo: a efetividade da fiscalização ambiental para o controle do desmatamento ilegal na Amazônia. PhD thesis, Universidade de Brasília (UNB), 2015. URL: http://repositorio2.unb.br/jspui/handle/10482/19914, doi:10.26512/2015.05.T.19914.

[39]

Brasil. Lei nº 14.701, de 20 de outubro de 2023. Julho 2024. Online; acessado 31 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2023/lei/L14701.htm.

[40]

Brasil. Lei nº 11.284, de 2 de março de 2006. Julho 2024. Online; acessado 10 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11284.htm.

[41]

Serviço Florestal Brasileiro. Cadastro nacional de florestas públicas. Julho 2024. Online; acessado 10 de Julho de 2024. URL: https://www.gov.br/florestal/pt-br/assuntos/cadastro-nacional-de-florestas-publicas/cadastro-nacional-de-florestas-publicas.

[42]

Brasil. Lei nº 12.651, de 25 de maio de 2012. Julho 2024. Online; acessado 13 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm.

[43]

Brasil. Lei no 10.267, de 28 de agosto de 2001. Julho 2024. Online; acessado 13 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/LEIS/LEIS_2001/L10267.htm.

[44]

T. Marra, K. Barbosa, and E. Oliveira. Brazil towards an effective cadastre with sigef. In 2015 World Bank Conference on Land and Proverty. Washington DC. 2015.

[45]

F. E. M. Lemos. Evidências de desconexão entre a administração pública e cartórios de registros de imóveis para o cadastro territorial rural brasileiro. Master's thesis, Universidade do Estado de Santa Catarina (UESC), 2017. URL: https://sistemabu.udesc.br/pergamumweb/vinculos/000045/000045fe.pdf.

[46]

INCRA. Manual do sigef. Julho 2024. Online; acessado 14 de Julho de 2024. URL: https://sigef.incra.gov.br/documentos/manual/.

[47]

Brasil. Lei nº 6.015, de 31 de dezembro de 1973. Julho 2024. Online; acessado 14 de Julho de 2024. URL: https://www.planalto.gov.br/ccivil_03/LEIS/L6015consolidado.htm.

[48]

Brasil. Manual de combate ao trabalho em condições análogas às de escravo. Julho 2024. Online; acessado 28 de Julho de 2024. URL: https://www.mpf.mp.br/atuacao-tematica/ccr2/coordenacao/comissoes-e-grupos-de-trabalho/escravidao-contemporanea-migrado-1/notas-tecnicas-planos-e-oficinas/combate%20trabalho%20escravo%20WEB%20MTE.pdf.

[50]

Brasil. Portaria interministerial mtps-mdh nº 4, de 11 de maio de 2016. Julho 2024. Online; acessado 28 de Julho de 2024. URL: https://www.gov.br/trabalho-e-emprego/pt-br/assuntos/legislacao/portarias-1/portarias-vigentes-3/PDFPortariaInterministerialMPTSMDHn4de11demaiode2016compilada.pdf.

[51]

P. A. Q. Coutinho, P. G. Fernandes, M. C. Scarabello, and A. G. O. P Barretto. Nota ténica: malha fundiária matricial do brasil. Technical Report 0, GPP ESALQ/USP, IMAFLORA, Cite, Junho 2024. URL: https://www.cartasdaterra.com.br/.

[52]

Molly E Brown. Remote sensing technology and land use analysis in food security assessment. J Land Use Sci, 11(6):623–641, 2016.

[53]

IBGE. Monitoramento da cobertura e uso da terra do brasil. Agosto 2024. Online; acessado 14 de Julho de 2024. URL: https://www.ibge.gov.br/apps/monitoramento_cobertura_uso_terra/v1/#/home/.

[54]

Eric F Lambin, Helmut Geist, and Ronald R Rindfuss. Introduction: local processes with global impacts. In Land-use and land-cover change: Local processes and global impacts, pages 1–8. Springer, 2006.

[55]

David Saah, Karis Tenneson, Ate Poortinga, Quyen Nguyen, Farrukh Chishtie, Khun San Aung, Kel N Markert, Nicholas Clinton, Eric R Anderson, Peter Cutter, and others. Primitives as building blocks for constructing land cover maps. Int J Appl Earth Obs, 85:101979, 2020.

[56]

Claudio Aparecido Almeida, Luís Eduardo Pinheiro Maurano, Dalton de Morisson Valeriano, Gilberto Câmara, Lúbia Vinhas, Marisa da Motta, Alessandra Rodrigues Gomes, Antônio Miguel Vieira Monteiro, Arlesson Antônio de Almeida Souza, Cassiano Gustavo Messias, and others. Metodologia utilizada nos sistemas prodes e deter-2. Technical Report, INPE, Outubro 2022. URL: http://urlib.net/ibi/8JMKD3MGP3W34T/47GAF6S.

[57]

Cláudio Aparecido de Almeida, Alexandre Camargo Coutinho, Júlio César Dalla Mora Esquerdo, Marcos Adami, Adriano Venturieri, Cesar Guerreiro Diniz, Nadine DessayY, Laurent Durieux, and Alessandra Rodrigues Gomes. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazonica, 46:291–302, 09 2016. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0044-59672016000300291&lang=pt.

[58]

CM Souza, JZ Shimbo, MR Rosa, LL Parente, AA Alencar, BFT Rudorff, H Hasenack, M Matsumoto, LG Ferreira, PWM Souza-Filho, and others. Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sensing, 2020. doi:https://doi.org/10.3390/rs12172735.

[59]

Eugene Linden. Torching the amazon: can the rainforest be saved? Setembro 1989. Online; acessado 07 de Agosto de 2024. URL: https://content.time.com/time/covers/0,16641,19890918,00.html.

[60]

Armando Pacheco dos Santos and Evelyn Marcia Leao de Moraes Novo. Uso de dados do landsat-1 na implantação, controle e acompanhamento de projetos agropecuários no sudoeste da amazônia legal. Junho 1977. URL: http://urlib.net/sid.inpe.br/iris@1912/2005/07.15.22.29.49.

[61]

Antonio Tebaldi Tardin, Jose Eduardo Rodrigues, Myrian de Moura Abdon, Rene Antonio Novaes, Sherry Chou Chen, Valdete Duarte, Yosio Edemir Shimabukuro, Armando Pacheco dos Santos, David Chung Liang Lee, Fernando Celso Soares Maia, Francisco Jose Mendonca, and Getulio Vargas de Assuncao. Levantamento de áreas de desmatamento na Amazônia Legal através de imagens do Satelite Landsat. INPE, 1979. URL: http://urlib.net/ibi/6qtX3pFwXQZ3r59YD6/GLCRo.

[62]

Yosio Edemir Shimabukuro, João Santos, Antonio Formaggio, Valdete Duarte, Bernardo Rudorff, F Achard, and M Hansen. The brazilian amazon monitoring program: prodes and deter projects. In Global forest monitoring from earth observation, volume 2012, pages 153–169. CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2012. doi:https://doi.org/10.1201/b13040.

[63]

Gilberto Câmara, Ricardo Cartaxo Modesto Souza, Ubirajara Moura Freitas, and Juan Garrido. Spring: integrating remote sensing and gis by object-oriented data modelling. Computers & Graphics, 20(3):395–403, 1996. URL: https://www.sciencedirect.com/science/article/pii/0097849396000088, doi:https://doi.org/10.1016/0097-8493(96)00008-8.

[64]

Luis Eduardo Pinheiro Maurano, Maria Isabel Sobral Escada, and Camilo Daleles Renno. Padrões espaciais de desmatamento ea estimativa da exatidão dos mapas do prodes para amazônia legal brasileira. Ciência florestal, 29(4):1763–1775, 2019.

[65]

Y. E. Shimabukuro, G. T. Batista, E. M. K. Mello, J. C. Moreira, and V. Duarte. Using shade fraction image segmentation to evaluate deforestation in landsat thematic mapper images of the amazon region. International Journal of Remote Sensing, 19(3):535–541, 1998. doi:10.1080/014311698216152.

[66]

L Sant’anna Bins, LM Garcia Fonseca, Guaraci José Erthal, and F Mitsuo Ii. Satellite imagery segmentation: a region growing approach. Simpósio Brasileiro de Sensoriamento Remoto, 8(1996):677–680, 1996.

[67]

INPE e Funcate. Terraamazon. Agosto 2024. Online; acessado 08 de Agosto de 2024. URL: http://www.terraamazon.dpi.inpe.br/.

[68]

Bernardo F. T. Rudorff, Marcos Adami, Joel Risso, Daniel Alves De Aguiar, Bernardo Pires, Daniel Amaral, Leandro Fabiani, and Izabel Cecarelli. Remote sensing images to detect soy plantations in the amazon biome—the soy moratorium initiative. Sustainability, 4(5):1074–1088, 2012. URL: https://www.mdpi.com/2071-1050/4/5/1074, doi:10.3390/su4051074.

[69]

INPE. Prodes - desmatamento. Agosto 2024. Online; acessado 08 de Agosto de 2024. URL: https://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates.

[70]

Natália Girão Rodrigues de Mello and Paulo Artaxo. Evolução do plano de ação para prevenção e controle do desmatamento na amazônia legal. Revista do Instituto de Estudos Brasileiros, pages 108–129, Jan 2017. URL: https://doi.org/10.11606/issn.2316-901X.v0i66p108-129, doi:10.11606/issn.2316-901X.v0i66p108-129.

[71]

Liana O Anderson, Yosio Edemir Shimabukuro, Ruth S Defries, and Douglas Morton. Assessment of deforestation in near real time over the brazilian amazon using multitemporal fraction images derived from terra modis. IEEE Geoscience and Remote Sensing Letters, 2(3):315–318, 2005.

[72]

Cesar Guerreiro Diniz, Arleson Antonio de Almeida Souza, Diogo Corrêa Santos, Mirian Correa Dias, Nelton Cavalcante da Luz, Douglas Rafael Vidal de Moraes, Janaina Sant’Ana Maia, Alessandra Rodrigues Gomes, Igor da Silva Narvaes, Dalton M. Valeriano, Luis Eduardo Pinheiro Maurano, and Marcos Adami. Deter-b: the new amazon near real-time deforestation detection system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7):3619–3628, 2015. doi:10.1109/JSTARS.2015.2437075.

[73]

T. P. Pinheiro, C. A. Almeida, L. M. Pinheiro, D. M. Valeriano, A. R. Gomes, M. Adami, A. Scheide, and S. H. Nogueira. The near real-time deforestation detection system: case study of the deter system for the cerrado biome. Applied Earth Science, 132(3-4):271–280, 2023. doi:10.1080/25726838.2023.2265242.

[74]

INPE e EMBRAPA. Nota técnica - evento de lançamento dos novos resultados do terraclass amazônia e cerrado. Agosto 2024. Online; acessado 06 de Agosto de 2024. URL: https://drive.google.com/file/d/15LDuOJFUTaSp4iD4X6XRjUEawo9kTZzn/view.

[75]

Brasil. Portaria mma nº 365 de 27 de novembro de 2015. Agosto 2024. Online; acessado 06 de Agosto de 2024. URL: http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?jornal=1&pagina=114&data=30/11/2015&sa=D.

[76]

Karine R Ferreira, Gilberto R Queiroz, Lubia Vinhas, Rennan FB Marujo, Rolf EO Simoes, Michelle CA Picoli, Gilberto Camara, Ricardo Cartaxo, Vitor CF Gomes, Lorena A Santos, and others. Earth observation data cubes for brazil: requirements, methodology and products. Remote Sensing, 12(24):4033, 2020. doi:https://doi.org/10.3390/rs12244033.

[77]

Rolf Simoes, Gilberto Camara, Gilberto Queiroz, Felipe Souza, Pedro R. Andrade, Lorena Santos, Alexandre Carvalho, and Karine Ferreira. Satellite image time series analysis for big earth observation data. Remote Sensing, 2021. URL: https://www.mdpi.com/2072-4292/13/13/2428, doi:10.3390/rs13132428.

[78]

NAÇÕES UNIDAS. Sistema de contas econômicas ambientais 2012: marco central. 2012. Online; acessado 09 de Agosto de 2024. URL: https://repositorio.cepal.org/bitstream/handle/11362/40850/1/S1601340_pt.pdf.

[79]

IBGE. Manual técnico de uso da terra. Technical Report 7, IBGE, 2013. URL: https://biblioteca.ibge.gov.br/visualizacao/livros/liv81615.pdf.

[80]

Fabiana Zioti, Karine R Ferreira, Gilberto R Queiroz, Alana K Neves, Felipe M Carlos, Felipe C Souza, Lorena A Santos, and Rolf EO Simoes. A platform for land use and land cover data integration and trajectory analysis. International Journal of Applied Earth Observation and Geoinformation, 106:102655, 2022. doi:https://doi.org/10.1016/j.jag.2021.102655.

[81]

NASA. Nasa’s earth science satellite fleet. 2013. Online; acessado 27 de Fevereiro de 2021. URL: https://earthobservatory.nasa.gov/images/81559/nasas-earth-science-satellite-fleet.

[82]

Wim J.D van Leeuwen, Alfredo R Huete, and Trevor W Laing. Modis vegetation index compositing approach: a prototype with avhrr data. Remote Sensing of Environment, 69(3):264–280, 1999. URL: https://www.sciencedirect.com/science/article/pii/S003442579900022X, doi:https://doi.org/10.1016/S0034-4257(99)00022-X.

[83]

Junchang Ju, David P. Roy, Yanmin Shuai, and Crystal Schaaf. Development of an approach for generation of temporally complete daily nadir modis reflectance time series. Remote Sensing of Environment, 114(1):1–20, 2010. URL: https://www.sciencedirect.com/science/article/pii/S0034425709002557, doi:https://doi.org/10.1016/j.rse.2009.05.022.

[84]

NASA. The worldwide reference system. 2023. Online; acessado 25 de Junho de 2023. URL: https://landsat.gsfc.nasa.gov/about/the-worldwide-reference-system/.

[85]

David Montero, César Aybar, Miguel D Mahecha, Francesco Martinuzzi, Maximilian Söchting, and Sebastian Wieneke. A standardized catalogue of spectral indices to advance the use of remote sensing in earth system research. Scientific Data, 10(1):1–20, 2023.

[86]

Wouter Arnoud Dorigo, Raúl Zurita-Milla, Allard de Wit, Jason Brazile, Ranvir Singh, and Michael E. Schaepman. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinformation, 9:165–193, 2007. doi:https://doi.org/10.1016/j.jag.2006.05.003.

[87]

Ray D. Jackson and Alfredo R. Huete. Interpreting vegetation indices. Preventive Veterinary Medicine, 11:185–200, 1991. doi:https://doi.org/10.1016/S0167-5877%2805%2980004-2.

[88]

John Wilson Rouse, Rüdiger H Haas, John A Schell, and Donald W Deering. Monitoring vegetation systems in the great plains with erts. NASA Spec. Publ, 351(1):309, 1974.

[89]

Pedro Alberto Morettin and Clélia Maria de Castro Toloi. Análise de séries temporais. Edgard Blucher, 2004.

[90]

Gerbert Roerink, Massimo Menenti, and Wouter Verhoef. Reconstructing cloudfree ndvi composites using fourier analysis of time series. International Journal of Remote Sensing, 21:1911 – 1917, 2000. URL: https://doi.org/10.1080/014311600209814.

[91]

Linglin Zeng, Brian D. Wardlow, Daxiang Xiang, Shun Hu, and Deren Li. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 237:111511, 2020. doi:https://doi.org/10.1016/j.rse.2019.111511.

[92]

P. Jonsson and L. Eklundh. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8):1824–1832, 2002. doi:10.1109/TGRS.2002.802519.

[93]

Per Jönsson and Lars Eklundh. Timesat - a program for analyzing time-series of satellite sensor data. Comput. Geosci., 30:833–845, 2004. doi:https://doi.org/10.1016/j.cageo.2004.05.006.

[94]

Lars Eklundh and Per" Jönsson. TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring, pages 177–194. Springer International Publishing, 2016. doi:10.1007/978-3-319-47037-5_9.

[95]

Michelle Cristina Araujo Picoli, Gilberto Camara, Ieda Sanches, Rolf Simões, Alexandre Carvalho, Adeline Maciel, Alexandre Coutinho, Julio Esquerdo, João Antunes, Rodrigo Anzolin Begotti, and others. Big earth observation time series analysis for monitoring brazilian agriculture. ISPRS journal of photogrammetry and remote sensing, 145:328–339, 2018.

[96]

Victor Maus, Gilberto Câmara, Ricardo Cartaxo, Alber Sanchez, Fernando M Ramos, and Gilberto R De Queiroz. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3729–3739, 2016.

[97]

Jan Verbesselt, Rob J Hyndman, Glenn J. Newnham, and Darius Culvenor. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114:106–115, 2010. doi:https://doi.org/10.1016/J.RSE.2009.08.014.

[98]

Pierre Soille, Armin Burger, D De Marchi, Pieter Kempeneers, D Rodriguez, Vassilis Syrris, and Veselin Vasilev. A versatile data-intensive computing platform for information retrieval from big geospatial data. Future Generation Computer Systems, 81:30–40, 2018.

[99]

Cristina Gómez, Joanne C White, and Michael A Wulder. Optical remotely sensed time series data for land cover classification: a review. ISPRS Journal of photogrammetry and Remote Sensing, 116:55–72, 2016.

[100]

Mariana Belgiu and Ovidiu Csillik. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote sensing of environment, 204:509–523, 2018.

[101]

Marius Appel and Edzer Pebesma. On-demand processing of data cubes from satellite image collections with the gdalcubes library. Data, 2019. doi:10.3390/data4030092.

[102]

Gregory Giuliani, Bruno Chatenoux, Andrea De Bono, Denisa Rodila, Jean-Philippe Richard, Karin Allenbach, Hy Dao, and Pascal Peduzzi. Building an earth observations data cube: lessons learned from the swiss data cube (sdc) on generating analysis ready data (ard). Big Earth Data, 1(1-2):100–117, 2017.

[103]

Brian Killough. The impact of analysis ready data in the africa regional data cube. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 5646–5649. IEEE, 2019.

[104]

Adam Lewis, Simon Oliver, Leo Lymburner, Ben Evans, Lesley Wyborn, Norman Mueller, Gregory Raevksi, Jeremy Hooke, Rob Woodcock, Joshua Sixsmith, and others. The australian geoscience data cube—foundations and lessons learned. Remote Sensing of Environment, 202:276–292, 2017.

[105]

Martin Sudmanns, Hannah Augustin, Brian Killough, Gregory Giuliani, Dirk Tiede, Alex Leith, Fang Yuan, and Adam Lewis. Think global, cube local: an earth observation data cube’s contribution to the digital earth vision. Big Earth Data, 7(3):831–859, 2023.

[106]

Jennifer N. Hird and Gregory John McDermid. Noise reduction of ndvi time series: an empirical comparison of selected techniques. Remote Sensing of Environment, 113:248–258, 2009. doi:10.1016/J.RSE.2008.09.003.

[107]

Paul F. Velleman. Robust nonlinear data smoothers: definitions and recommendations. Proceedings of the National Academy of Sciences of the United States of America, 74 2:434–6, 1977. doi:https://doi.org/10.1073/PNAS.74.2.434.

[108]

Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8):1627–1639, 1964. doi:10.1021/ac60214a047.

[109]

Pieter S. A. Beck, Clement Atzberger, Kjell Arild Høgda, Bernt Johansen, and Andrew K. Skidmore. Improved monitoring of vegetation dynamics at very high latitudes: a new method using modis ndvi. Remote Sensing of Environment, 100:321–334, 2006. doi:10.1016/J.RSE.2005.10.021.

[110]

Yves Julien and José Antonio Sobrino. Global land surface phenology trends from gimms database. International Journal of Remote Sensing, 30:3495 – 3513, 2009. doi:https://doi.org/10.1080/01431160802562255.

[111]

Yves Julien and José A. Sobrino. Comparison of cloud-reconstruction methods for time series of composite ndvi data. Remote Sensing of Environment, 114:618–625, 2010. doi:https://doi.org/10.1016/J.RSE.2009.11.001.

[112]

Mark E. Jakubauskas, David R. Legates, and Jude H. Kastens. Crop identification using harmonic analysis of time-series avhrr ndvi data. Computers and Electronics in Agriculture, 37:127–139, 2002. doi:https://doi.org/10.1016/S0168-1699%2802%2900116-3.

[113]

Valerie J Pasquarella, Christopher E Holden, Les Kaufman, and Curtis E Woodcock. From imagery to ecology: leveraging time series of all available landsat observations to map and monitor ecosystem state and dynamics. Remote Sensing in Ecology and Conservation, 2(3):152–170, 2016.

[114]

Lorena Alves Santos, Karine Ferreira, Michelle Picoli, Gilberto Camara, Raul Zurita-Milla, and Ellen-Wien Augustijn. Identifying spatiotemporal patterns in land use and cover samples from satellite image time series. Remote Sensing, 13(5):974, 2021.

[115]

Lorena A Santos, Karine R Ferreira, Gilberto Camara, Michelle CA Picoli, and Rolf E Simoes. Quality control and class noise reduction of satellite image time series. ISPRS Journal of Photogrammetry and Remote Sensing, 177:75–88, 2021.

[116]

Lubia Vinhas, Gilberto Ribeiro de Queiroz, Karine Reis Ferreira, and Gilberto Camara. Web services for big earth observation data. Revista Brasileira de Cartografia, maio 2017. doi:10.14393/rbcv69n5-44004.

[117]

Gaston R. Demarée and This Rutishauser. Origins of the word “phenology”. Eos, Transactions American Geophysical Union, 90(34):291–291, 2009. doi:10.1029/2009EO340004.

[118]

C.J. Tucker, J.H. Elgin, J.E. McMurtrey, and C.J. Fan. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sensing of Environment, 8(3):237–248, 1979. URL: https://www.sciencedirect.com/science/article/pii/003442577990004X, doi:10.1016/0034-4257(79)90004-X.

[119]

Gautam D. Badhwar. Crop emergence date determination from spectral data. Photogrammetric Engineering and Remote Sensing, 46:369–377, 1980. URL: https://www.asprs.org/wp-content/uploads/pers/1980journal/mar/1980_mar_369-377.pdf.

[120]

Gautam D. Badhwar and D. R. Thompson. Estimating emergence date of spring small grains using landsat spectral data. Agronomy Journal, 75:75–78, 1983. doi:https://doi.org/10.2134/agronj1983.00021962007500010019x.

[121]

Keith E. Henderson and Gautam D. Badhwar. An initial model for estimating soybean development stages from spectral data. Remote Sensing of Environment, 14:55–63, 1984. doi:10.1016/0034-4257(84)90007-5.

[122]

Kevin Gallo and Thomas K. Flesch. Large-area crop monitoring with the noaa avhrr: estimating the silking stage of corn development. Remote Sensing of Environment, 27:73–80, 1989. doi:https://doi.org/10.1016/0034-4257%2889%2990038-2.

[123]

Alberte Fischer. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sensing of Environment, 48:220–230, 1994. doi:https://doi.org/10.1016/0034-4257%2894%2990143-0.

[124]

Andrés Viña, Anatoly A. Gitelson, Donald Rundquist, Galina P. Keydan, Bryan Leavitt, and James S. Schepers. Monitoring maize (zea mays l.) phenology with remote sensing. Agronomy Journal, 96:1139–1147, 2004. doi:https://doi.org/10.2134/AGRONJ2004.1139.

[125]

Toshihiro Sakamoto, Masayuki Yokozawa, Hitoshi Toritani, Michio Shibayama, Naoki Ishitsuka, and Hiroyuki Ohno. A crop phenology detection method using time-series modis data. Remote Sensing of Environment, 96:366–374, 2005. doi:https://doi.org/10.1016/J.RSE.2005.03.008.

[126]

Toshihiro Sakamoto, Nhan Van Nguyen, Hiroyuki Ohno, Naoki Ishitsuka, and Masayuki Yokozawa. Spatio-temporal distribution of rice phenology and cropping systems in the mekong delta with special reference to the seasonal water flow of the mekong and bassac rivers. Remote Sensing of Environment, 100:1–16, 2006. doi:https://doi.org/10.1016/J.RSE.2005.09.007.

[127]

Toshihiro Sakamoto, Brian D. Wardlow, Anatoly A. Gitelson, Shashi B. Verma, Andrew E. Suyker, and Timothy J. Arkebauer. A two-step filtering approach for detecting maize and soybean phenology with time-series modis data. Remote Sensing of Environment, 114:2146–2159, 2010. URL: https://doi.org/10.1016/J.RSE.2010.04.019.

[128]

Xingzhi You, Jihua Meng, Miao Zhang, and Taifeng Dong. Remote sensing based detection of crop phenology for agricultural zones in china using a new threshold method. Remote. Sens., 5:3190–3211, 2013. doi:https://doi.org/10.3390/rs5073190.

[129]

Marcos Adami. Estimativa da data de plantio da soja por meio de séries temporais de imagens MODIS. PhD thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2010-10-20 2010. URL: http://urlib.net/ibi/8JMKD3MGP7W/3897URE.

[130]

Jerry A. Johann, Willyan R. Becker, Miguel A. Uribe-Opazo, and Erivelto Mercante. Uso de imagens do sensor orbital modis na estimação de datas do ciclo de desenvolvimento da cultura da soja para o estado do paraná – brasil. Engenharia Agrícola, 36(1):126–142, Jan 2016. doi:10.1590/1809-4430-Eng.Agric.v36n1p126-142/2016.

[131]

Grazieli Rodigheri, Ieda Del’Arco Sanches, Jonathan Richetti, Rodrigo Yoiti Tsukahara, Roger Lawes, Hugo do Nascimento Bendini, and Marcos Adami. Estimating crop sowing and harvesting dates using satellite vegetation index: a comparative analysis. Remote Sensing, 2023. doi:10.3390/rs15225366.

[132]

Cleverton Tiago Carneiro de Santana, Ieda Del’Arco Sanches, Marcellus Marques Caldas, and Marcos Adami. A method for estimating soybean sowing, beginning seed, and harvesting dates in brazil using ndvi-modis data. Remote Sensing, 2024. doi:10.3390/rs16142520.

[133]

Jan C. Zadoks. A decimal code for the growth stages of cereals. 1974. URL: https://doi.org/10.1111/J.1365-3180.1974.TB01084.X.

[134]

Uwe Meier. Growth stages of mono- and dicotyledonous plants: bbch monograph. 2018. URL: https://doi.org/10.5073/20180906-074619.

[135]

J. R. B. Farias, A.F. Neponuceno, N. Neumaier, and T. Oya. A cultura da soja no brasil. 2020. URL: https://doi.org/10.5281/zenodo.3588294.

[136]

Walter R. Fehr and Charles E. Caviness. Stages of soybean development. 1977. URL: https://dr.lib.iastate.edu/handle/20.500.12876/90239.

[137]

José Carlos Cruz, Israel Alexandre Pereira Filho, Ramon Costa Alvarenga, Miguel M. Gontijo Neto, João Herbert Moreira Viana, Maurílio Fernandes de Oliveira, Walter José Rodrigues Matrangolo, and Manoel Ricardo de Albuquerque Filho. Cultivo do milho. Technical Report, EMBRAPA, Setembro 2010. URL: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/27037/1/Plantio.pdf.

[138]

I. A. Ciampitti, R. W. Elmore, and J. Lauer. Fases do desenvolvimento da cultura do milho. Agosto 2024. Online; acessado 25 de Agosto de 2024. URL: https://bookstore.ksre.ksu.edu/download/corn-growth-and-development-poster-20x30_MF3305.

[139]

Sofanit Araya, Bertram Ostendorf, Gregory Lyle, and Megan Lewis. Cropphenology: an r package for extracting crop phenology from time series remotely sensed vegetation index imagery. Ecological Informatics, 46:45–56, 2018. doi:https://doi.org/10.1016/j.ecoinf.2018.05.006.

[140]

Daniel Doktor and Maximilian Lange. Phenological metrics for protected area "ohridprespa", modis aqua tile h19v04. Agosto 2024. Online; acessado 18 de Agosto de 2024. URL: https://doi.org/10.5281/zenodo.3588294.

[141]

Dongdong Kong, Tim R. McVicar, Mingzhong Xiao, Yongqiang Zhang, Jorge L. Peña-Arancibia, Gianluca Filippa, Yuxuan Xie, and Xihui Gu. Phenofit: an r package for extracting vegetation phenology from time series remote sensing. Methods in Ecology and Evolution, 13(7):1508–1527, 2022. doi:https://doi.org/10.1111/2041-210X.13870.

[142]

Matthias Forkel, Nuno Carvalhais, Jan Verbesselt, Miguel D. Mahecha, Christopher S. R. Neigh, and Markus Reichstein. Trend change detection in ndvi time series: effects of inter-annual variability and methodology. Remote. Sens., 5:2113–2144, 2013. doi:https://doi.org/10.3390/rs5052113.

[143]

Maximilian Lange and Daniel Doktor. Phenex: auxiliary functions for phenological data analysis. 2024. R package version 1.4-5. URL: https://cran.r-project.org/web/packages/phenex/index.html.

[144]

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clustering–a decade review. Information Systems, 53:16–38, 2015.

[145]

Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing Surveys (CSUR), 45(1):1–34, 2012.

[146]

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier, 2011.

[147]

Eamonn Keogh and Jessica Lin. Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowledge and information systems, 8(2):154–177, 2005.

[148]

Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and information systems, 7(3):358–386, 2005.

[149]

T Warren Liao. Clustering of time series data—a survey. Pattern recognition, 38(11):1857–1874, 2005.

[150]

Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In KDD workshop, volume 10, 359–370. Seattle, WA, 1994.

[151]

Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms. Annals of Data Science, 2(2):165–193, 2015.

[152]

S. Samarasinghe. Neural networks for applied sciences and engineering. Auerbach Publications, 2006.

[153]

T. Kohonen, M. R. Schroeder, and T. S. Huang. Self-organizing maps. Springer-Verlag, New York, 2001.

[154]

Rodrigo de Sales Silva Adeu, Karine Reis Ferreira, Pedro R Andrade, and Lorena Santos. Assessing satellite image time series clustering using growing som. In Computational Science and Its Applications–ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part V 20, 270–282. Springer, 2020.

[155]

W. Natita, W. Wiboonsak, and S. Dusadee. Appropriate learning rate and neighborhood function of self-organizing map (som) for specific humidity pattern classification over southern thailand. International Journal of Modeling and Optimization, 6:61–65, 2016.

[156]

M. Dittenbach, D. Merkl, and A. Rauber. Organizing and exploring high-dimensional data with the growing hierarchical self-organizing map. IEEE Transactions on Neural Networks, pages 1331 – 1341, 2003.

[157]

Z. Wu and G. Yen. A som projection technique with the growing structure for visualizing high dimensional data. International Journal of Neural Systems, 13(5):353 – 365, 2003.

[158]

D. Alahakoon, S. K. Halgamuge, and B. Srinivasan. Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Transactions on Neural Networks, 11:601–614, 2000.

[159]

BLC Silva, FC Souza, KR Ferreira, GR Queiroz, and LA Santos. Spatiotemporal segmentation of satellite image time series using self-organizing map. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3:255–261, 2022.

[160]

Adobe Acrobat. O que é um pdf? portable document format. 2024. Online; acessado 25 de Outubro de 2021. URL: https://www.adobe.com/br/acrobat/about-adobe-pdf.html.